UPU Interconnection Platform

Web Service Integration Guide

version 1.07

Last updated: 23 August 2022

S

Postal Technology Centre - Universal Postal Union Weltpoststrasse 4, 3015 Bern - Switzerland

Phone: +41 31 350 31 11

¢ ey | = | UNIVERSAL
. 57 & posTaL
Service Desk Portal: https://support.upu.int o D UNION

https://support.upu.int/

This document and the associated software contain proprietary information
of the Universal Postal Union (UPU) and are provided under a specific
agreement with eligible postal entities stipulating restrictions on use and dis-
closure. This document and the associated software are protected by law,
including, as applicable, copyright laws.

This document and the associated software may not be, partly or as a
whole, copied, disassembled, decompiled, modified or reverse-engineered
without the express written permission from the UPU.

References in this publication to UPU products, applications, or services do
not imply that the UPU intends to, or can make the said software, products,
applications, or services, or parts thereof, available in all UPU member coun-
tries. Furthermore, no reference to a UPU software, product, application, or
service is intended to state or imply that only UPU software, products,
applications, or services may be used. Evaluation and verification of oper-
ation in conjunction with other products, applications, or services, except
those expressly designated by the UPU, are the responsibility of the user.

Any references to particular designations of countries or territories shall not
imply any endorsement or judgement by the UPU as to the legal status of
such countries or territories, of their authorities and institutions or of the
delimitation of their boundaries. Moreover, any references to names of spe-
cific companies or products (whether or not indicated as registered) shall
not imply any intention to infringe proprietary rights, nor shall it be con-
strued as an endorsement or recommendation on the part of the UPU.

The UPU shall not be liable for any loss or damage arising from, or directly
or indirectly connected to, the use of, reference to, or reliance on the asso-
ciated software or any other UPU product, application, or service, includ-
ing, but not limited to, any liability arising from negligent misuse, errors,
disclosure, undue transfer, loss or destruction of data that may occur.

Any trademarks mentioned or referred to in this document and the asso-
ciated software are the property of their respective owners.

The information in this document, including uniform resource locators
(URLs) and other website references, is subject to change without notice.

Nothing in or relating to this notice shall be deemed or interpreted as a
waiver, express or implied, of the privileges and immunities enjoyed by the
UPU as an intergovernmental organization and specialized agency of the
United Nations.

Copyright © 1996-2022 Universal Postal Union. All rights reserved.

PostalTechnologyCentre

Table of contents

AboUt this AOCUMENt L 4
Intended audieNnCe o 4
How to use this manual ... 4
T ermINOlOgY . 4

Nt oAU ON 5
OVBIVIEW . e 5
WED SOIVICE ... 5
S CUTI Y . 5

Web Service INterface ... 7
M etNOdS 7

Data SrUCIUI S . 8
TDate ANdPlace Class 8
TIMO ClaSS . . .o 10
TSearchCriteria ClasS i 13
TPayInfo class 13
TStatUS ClaSS 16

Connectingtothe UPU-IP's Web Service 22
Verify the certificates installation 22
How a certificate is validated 23
The Web Service's WS DL file ... e 24
Generating a Web Service proxy client from the WSDL 24
Generating an API proxy client ... 24

UPU-IP Client certificate request requirements 28
Connecting to the UPU-IP API .. 28
Requesting a client certificate from a non-Windows-based OS .. 28

Calling the UPU-IP's Web Service from aJavaclient 31
Prerequisites ...l 31
Getting a client certificate in Java Key Store 31
Connecting to the UPU-IP Web Service ... 33

INtegration SCENATIOS L 34
Issue a postal payment 34
Retrieve and pay a postal payment 35
Cancel a postal payment ... 37
Reimburse a postal payment ... 39
Payments to/from external partners ... 39

About this document

About this document

Intended audience

This document is intended for system developers or IT staff of postal organizations and their sub-
sidiaries who are building Web Service client applications to connect their national system to the UPU
Interconnection Platform (UPU-IP).

How to use this manual

For information on:
o the methods exposed by the UPU-IP's Web Service, see "Web Service Interface" on page 7.

o how to connect to the UPU-IP's Web Service, see "Connecting to the UPU-IP's Web Service "
on page 22

« the various integration scenarios, see "Integration scenarios" on page 34.

« the certificate requirements and how to connect to the UPU-IP API from a non-Windows
operating system, see "UPU-IP Client certificate request requirements” on page 28.

o how to call the UPU-IP Web Service from a Java client, see "Calling the UPU-IP's Web Ser-
vice from a Java client" on page 31.

You may not copy, rewrite or redistribute this document in any form. To do so is a violation of inter-
national copyright laws. However, the Postal Technology Centre welcomes your input. For queries or
service requests, you can raise them at https://support.upu.int.

Terminology

The following key terms are used throughout this document:

Term Description

A wide range of payment services and instructions, used

Postal payment
pay instead of "money order"
WS Web Service
Refers to organizations, Designated Operators (DOs), or
third-party commercial entities that connect or use UPU-IP
Business partner to exchange payment and payment-related messages with

other business partners. A business partner performs various
postal payment transactions: sending, receiving, and others.

https://support.upu.int/

Introduction

Introduction

Overview

The UPU Interconnection Platform (UPU-IP) enables near real-time exchange of payment and pay-
ment related messages between business partners.

Through the UPU-IP, the following types of services are possible:

« Urgent service: As soon as payment is issued to the UPU-IP, the paying organization can
retrieve it. The Web Service protocol enables urgent, on demand issuing and payout.

« Payment anywhere: Payout can take place at any connected payout agent of the bene-
ficiary's choice such as a post office or an external agent.

« Connection of external non-DO partners: Partners outside the UPU network can connect
to the UPU-IP for the issuing and payout of postal payments.

E A bridge links the UPU-IP to the UPU FTP/EDI network, enabling business partners exchanging
via the IFS FTP network or IFS EDI messages network to exchange with business partners connected
to the UPU-IP. The resulting service is, however, non-urgent as it is dependent on the Posts' indi-
vidual FTP upload/download schedules.

Web Service

The UPU-IP has a Web Service Interface which is exposed to business partners. Business partners
include not just designated postal operators but also permitted remittance service providers external
to the UPU network. Using the exposed Web Service (WS), business partners are able to build their
own web client applications to exchange payment messages via the UPU-IP. This results in a more
open network of remittance services.

Security

Message Level Security

The UPU-IP WS is secured using Message Level Security (MLS). Security credentials and claims are
encapsulated with every message providing end-to-end security independent of the transport pro-
tocol.

Web service request and response messages to and from the UPU-IP are digitally signed and encryp-
ted. By using x.509 certificates, authenticity is ensured while the use of digital signatures at the applic-
ation level ensures the non-repudiation of messages. MLS also has the advantage that the message
may be routed through intermediary systems without loss of security.

Transport Level Security

Transport Level Security (TLS) is an evolved version of Secure Socket Layer (SSL). Using x.509 cer-
tificate, TLS ensures end-to-end security of data sent between applications, avoiding possible eaves-
dropping or alteration of the content being transported.

Introduction

Web service requests and responses to and from UPU-IP are authenticated with x.509 certificates and
encrypted.

Web Service Interface

Web Service Interface

The Web Service Interface is exposed to business partners to allow them to exchange postal payment
related messages via the UPU Interconnection Platform (UPU-IP). Business partners are organizations
that use a national system and wish to connect this system to the UPU-IP by developing a WS client.
External payment networks, non-designated operators (DOs), money transfer operators, etc. can also
exchange payment messages through the UPU-IP.

Methods

For a complete list of the methods that the Web Service Interface exposes, see the UPU-IP API doc-
umentation at https://upu.api.post/upu-ip_api/api/index.html.

https://upu.api.post/upu-ip_api/api/index.html

Data Structures

Data Structures

This section uses diagrams to show the data structures passed as arguments to the Web Service Inter-
face methods when a business partner's WS client application makes a call to the UPU-IP using the
methods described in the previous chapter.

¢ A
EI For more information on parameters, refer to the UPU-IP API documentation at https://upu.api.-

post/upu-ip_api/api/index.html.

TDateAndPlace class

The TDateAndPlace class describes the date and place that an event took place. This parameter is
used when:

o issuing a postal payment using the Issue() method
« canceling a previously-issued postal payment using the Cancel() method
» paying a postal payment using the Pay() method

« reimbursing a postal payment using the Reimburse() method

https://upu.api.post/upu-ip_api/api/index.html
https://upu.api.post/upu-ip_api/api/index.html

Data Structures

TDateAndPlace

Unknown sownce
Event captured with web interface
Event captured on mobile interface

Event imported from other systems
Special event source (provision)

Clty {string}

Country {sting}

Street [string}
Subentityl {string}
Subentity2? {string}

|
|
PostCode {string} |
|
|
|

I

ﬂ

Email {string}

Fax {string}

Mcebile {string}

Phane {string}

I

Preference {string}

T

Cd {string) |
Country {stnng} |

Mrm {string} |

Data Structures

TMO class

The TMO class contains information about the postal payment and is used in the Issue() method. The
TMO class exposes several properties and also makes use of the TDateAndPlace class.

=
—
TMODetails |
— ———— |
 ——
CurrCd {string} |
ayneCEn b Value {decimal} |
- DepositedAmount |
4 TAmount | I
':1 CurrCd {string}

PurchaseDateAndPlace [string]

value {decimal} |

—| Depositeddmount¥Rate {decimal} |
—| OrderCharac |
TOrderCharacteristics |

AddressOnly {boolean}

DeclCode {string}

De|Narme {string}
FeesCode {string}
FreeOfCharge {boolean)

Message {string}
NotifyPayee {boclean}
BosteRestante {boolean}

SecretCode {string}
WalidUntil
DateTime |

ILLLLLLLLLL

1

Payeefddress |

]

TAddress |
City {string}
Country {string}
PostCode {string}
Street {string}

Subentitylistring}

TTTTTT]

Subentity2{string}

—| PayeeBankAccount |
THankfce |

N

Agency {string}
Bankld {string}

BusinessTypeld] {string}

BusinessTypeld2 {string}

Central&ccountMo {string}
IBAM {string}
LelFgnind {string}

TaxPayerld {string}

1
INNNNNNE

PayeeContacts |

L

TContacts |

Email {string}

Fax {string}

Mobile {string}

Phone {string}

Preference {string}

10

Data Structures

_|

PayeeMame |

L

THame |

First {string}
Last {string}

| Middle {string}

| Tithe {string}

_|

PayeesocialMedialD [string} |

_|

Remuneration |

I_|

Tamount |

CurrCd [string}
Value {decimal}

_|

Sendersddress |

L

Thaddress |

City {string}

Country {string}

PostCode {string)

Street {string}

Subentityl [string}

INNNNNI

Subentity2 {string}

_|

SenderBankAcoount |

L

TBankAcc

Agency {stringh

Bankld {string}

BusinessTypeldl {string)

BusinessTypeld2 {string}

CentralAccountNa [stning)

IBAM {string}

LelFgnind {string}

INNNNNNN

TaxPayerid {string}

_|

senderBirthDate |

L]

DateTime

_|

SenderBirthPlace |

L

TLocation |

Cd {string}

Country {string}

Nm {string}

_|

senderContacts |

[

TContacts

Email [string}

Fax {string}

Mobile {string}

Phone {string}

INNNNI

Preference {string}

11

Data Structures

— SenderiD1 |
L] TID |

|ssuer

1

|—| TLocation

Cd {string}

Country {string}

Mm {string}

Mo {string}

Typeld {string}

TypeDesc {string}

_|

Sender|D2 |

-

TID: |

IIRRINNI

lssuer

TLocation

1]

Cd {string}

Country {string}

Mim {string}

Mo {string}

TypeCd {string}

TypeDesc {string}

_|

SenderMame |

L

THame |

First {string}

Last {string}

Middle {string}

INNNINRINN

Title {string}

— SenderSocialMedial D {string)

L Transferredamaunt

|—| TAmount |

CurrCd {string}

-
—| Value {decimal}

For details on the TDateAndPlace class, see "TDateAndPlace class" on page 8.

12

Data Structures

TSearchCriteria class

The TSearchCriteria is passed as a parameter when the calling party wants to obtain postal pay-
ment information using the Get() method.

TSearchCriteria

DepositedAmauntFrom [decimal}

TransferredAmountFram [decimal} |
ransterredAmountTo [dacimal] |

TPaylnfo class

The TPayInfo class is passed as a parameter when the Pay() or Reimburse() methods are used for pay-
ing out or reimbursing a postal payment.

13

Data Structures

TPaylnfo

Natificatian

Channel {string}

DocMo {string}

[1]

— EventSource |
|—| TEventSource |
Unknawn (0} | Unknown source
Web {1} | Event captured with web interface
Mobile {2] | Event captured on mobile interface
Import {3} | Event imparted from other systems
MFS {2} | Special event source |provision)
GMTDT |
L oeerme]
LocalDT |
L oeerme |
Hfice |
L vome]
— Address |
|—| Taddress |
— City {string}
— Country {string}
PostCode {string)

Street {string} |
Subentityl {string}
Subentity? {string}

_|

Contacts |

L

TContacts |

Email {string}
Fax {string}
Maobile {string}
Phione {string) |
Preference {string} |

_|

Location |

[

TLocation |

Cd {string}
Country {string}

MNm {string]

— CounterAmount

|—| Thmount

]

CurrCd {string} |

_|

Value {decimal} |

Paiddmount

|

|—| Thmount

CurrCd {string}

Value {decimal}

14

Data Structures

" PayeeBankAccount |
TBankAcc |
— Agency {string} |
— Bankld [string) |
—{ BusinessTypeldl {string} |
—{ BusinessTypeld2 {string} |
1 CentralAccountMe [string]
— |BAMN {string}
— LelFgmind {string}
— TawPayerld [string}

—{ " PayeeBirthDate |
DateTime |
— PayesBirthPlace |
TLocation |

Cd {string}
Country {string}
Mm [string}

— PayeeCheckio |
—| PayeelDL |
TID |

—| Issuer |

|—| TLocation |

Cd {string}

Country {string}

Mm {string}

—| Mo {string} |

— TypeCd {string] |

—| TypeDesc [string} |

— PayeeiD2 |

L o |

—| Issuer |

|—| Tlocatian |

Cd {strng}

Country {string}

M {string}

—| Ma {string) |
—{ TypeCd string} |
| TypeDesc{string} |
T
THarme |
First {string}

Middle {string}

|
Last {string] |
|
|

Title {string}

L SecretCode {string} |

15

Data Structures

TStatus class

The TStatus class contains postal payment status information and is called after the CheckStatus()
method. TStatus exposes the LastEvent and MOInfo properties. MOInfo makes use of the TMO class
which is described in "TMO class" on page 10.

TStatus TStatus

I~ DateAndPlace |
L TOateAndPlce]
— EventSource |
|—| TEventSource |
Unknown source
Event captured with web interface
Event captured on mohile interface

Event imparted from other systems
MES {4} Special event source (provision|

— GMTDT |
|—| DateTime |
— LocalDT |
|—| DateTime |
—| Office |
|—| TOffice |
— Address |
|—| Thddress |

City {string}

|
Country {string] |
PostCode fstring} |
Stret {string) |
|

|

Subentityl {string}

Subentity2 {string}

— Contacts |

|—| TContacts |
Ermail {string}

T T T TT T

Fax {string |

Phone {string}

LT T 11

|
|
Mehbile {string) |
|
|

Preference {stringl

— Location |

|—| TLocation |
Cd {string} |

Country {string] |

L1

Mrn {string} |

— EDILISHD {string) |

16

Data Structures

_|

EventType |

0

TMOEventType |

Issued {0}

Order issued

|ssuedPushedToExternal {1}

Order issued and acticn pushed to external party

|zsuedByExternal {2}

Cirder issued by an external party

S O O N O N N I A N

Paid {3} IOrder paid
MotPaid {4} Crder marked as not paid
Canceled {5} Order cancelled by issuing party
Canceled Pushed TaExternal {6} |Order cancelled by issuing party and action pushed to external party
Reimbursed {7} Order reimbursed
Reimbursed PushedToExternal {8} |Drde-r reimbursed and action pushed to external party
AutaStateTrans {9} |Autumatlc state transition
UpdateStateFromExternal {10} |Order state updated from external party {in push model)
MonordReceived {11} [MOMORD received
MonordAckReceived {12} |MOMORD ACK received
MonordErrReceived {13} [MOMORD ERR received
ResordReceived |14} |RESORD received
ResordAckRecelved {15] |RESORD ACK received
ResordErrReceived {16} |REEDH.D ERR received
MaonardCreated {17} | MOMORD created
MonordCreatedForClearing {18} | MOMORD created for clearing
MonardAckCreated {19} | MOMORD ACK created
MeonordhckCreatedForClearing {20} | MONORD ACK created for clearing
ResordCreated (21) RESORD created
ResordCreated FarClearing {22} |RESORD created for clearing
ResordfckCreated (23} RESORD ACK created
ResordackCreatedForClearing {24} [RESORD ACK ereated for dearing
MMonordErrCreated {25} MOMORD ERR created

_|

ResordErrCreated {26}

|HE‘5«DRD ERR created

HonPaymentinfo |

THonPayment Detalts |

_|

— MeasuraCd |Man-payment measure code
— ReasonCd Mon-payment reasan code
—| ReasonDesc |Nnn-pa-¢ment reasan description
Paymentinfe |
|—| TPayinfo |
—| Natification |
|—| Thotification |
Channel |Cummu nication method ar check for payment
DacNa Reference number of the notification document if by fax
or mail, or check number if payment is made by check
— PayDateAndPlace |
I—| ToateAndPlace |
— EventSource |
|—| TEventsource |
Linknawn {0} LInkiown source
Web {1} Event captured with web interface
Maobile {2} Event captured on mobile interface
Import {3} Event imparted from other systems
MFS {4} Special event source (provision)

17

Data Structures

GMTDT |

-

DateTime |

LocalDT |

L

DateTime |

Office |

-

TOffice |

Address |

ThAddress |

City [string}

Country {string}

PostCode {string)

Street {string}

Subentityl {string}

Subentity2 {string]

Contacts |

TCantacks |

Ermail {string}

Fax:{string}

Mobile: {string}

Phane {string}

Preference {string]

Location |

TLocation |

Cd f=tring)

Country {string)

N {string}

—

PaymentDetails

5

TPaymentDetails |

_|

CounterAmaount |

-

TAmaount |

N

CurrCd {string}

Value {decimal}

_|

PaidAmaount |

L

ThAmount |

CurrCd {string}

Value {decimal}

PayeeBankAccount |

TBankAce |

Agency [string}

Bankld {decimal}

BusinessTypeldl {string}

BusinessTypeld? {decimal}

CentralAccountMao [string}

IBAM {string}

LelFgnilnd {string}

TaxPayerld {string}

_|

PayeeBirthDate |

DateTime

_|

PayeeBirthPlace |

TlLocation

Cd {string}

Country {string}

M {string}

18

Data Structures

—| PayeelheckMo {string} |
— PayeelDl |
I—| TID |
] ssuer |
L Tlocation |

Cd-fgring) |
Contry {string} |

M {string |

—| Mo (string} |

—| TypeCd (string} |

—| TypeDesc {string} |

— Payee|D2 |

O T |

— Issuer |

= Tlocation |

e steing) |

Courntry {strng} |

pim {string] |

— Mo string) |
— TypeCd {string) |
—| TypeDesc {string} |
—| PayeeMame |

|—| THame |

Firsk {=trirg)
Last {string}
Middle istring}
Title {=trimg)
—| SecretCode {string} |
— Reimburselnfo |
|—| Teaylnfo |
Matificatian |
|—| Thotification |
|:1 Channel | Communication method or check for payment
Docho Reference number of the notification document if by fax
or mail, or check number if payment is made by check
PayDateAndPlace |
I—| ThateAndPlace |
— EventSource |
|—| TEventSource |
Unknown {0} Unknown source
Web {1} Event captured with web interface
Maobile {2] |E'.lent captured an maobile interface
Impart {3} | Event imparted from other systems
MFS {4} | Special event source (provision)
— GMTDT |
|—| DateTime |
—| LocalDT |
|—| DateTime |

19

Data Structures

L oe |
| TOffice |
— Address |
L] TAddress |
—1 City lsting)
— Country {string}
— PastCode {string}
—] Street {string)
- Suberntityl {string}
— Siubentity? {5tring]
— Contacts |
|—| TContacts |
Email {string}
Eax {string)
Maobile {string)
Phaonie [string}
Preference {stang}
—| Location |
L TLocatinn |
C {string])
Country {string}
M {stbrimgt
— PaymentDetails |
|—| TrayrmentDetalls |
— Counteramount |
I—| TAmMount |
I: CurrCd {ztring}
Value [decimal)
—| Paidamount |
|—| TAmaunt |
I: Currld {string}
Value {decimal}
—| PayeeBankAccount |
TBankAee |

— Agency {stingh
— Bankld {decimal}

— BusinessTypeld] {string]

— BusinessTypeld2 {decimal }
— CentralAccountMa {string}
— I1BAN {string}
— LelFgnind {string}
— TaxPayerld {string}
— PayeeBirthDate |
I—| DateTime |
— PayeeBirthPlace |
Tlocation |
Cd {string}
Country [string}
MNm {string} |

_| PayveeCheckMo [string] |

20

Data Structures

_|

PayeelD1

L]

TID |

_|

lssuer |

L

Tlocation |

el {strinig) |

Country {string} |

M fstring} |

Mo [string} |

TypeCd {string} |

L 11

TypeDesc {string] |

_|

PayeelD2

C

TID |

_|

[|

-

Tiacation |

£ {string} |

Country [string} |

MM {string) |

Mo {string) |

TypeCd {string) |

_|
_|
_|

TypeDesc {string} |

_|

PayeeName |

-

THame

First {skring)

Last {string]

Micidle {string}

Title {string}

SecretCode {string}

L
State |

Tstate

AC {0}
cAfl}
CC{2} |mew arder

Order needs pre-processing

Clalrm answered against a money order

CR{3} [Claim made against a money order

|
B

Cancellation request rejected

D5 {5}
EA (6}
EC {7]

Cancellation request

Relmbursement information cancelled

Payment information cancelled

Cancellation request accepted

EE {9} [Drder expired
El {10}

EF {11} |Order paid

Payment impossible

ER{12} |order relmbursed
EW {13} [Payment delayed

FA {14} |Order abandoned

FD {15} |Cancellation request accepted

FE {16} [Order expired
FI{17} [Payment Impassible
FK {18} [Orderdeleted before transmission
FP {19} [Settlement of order payment

FR {20} |[Order reimbursed, confirmation
Fx {21} [|[Order abandoned

MO {22}

MP {23} |Reciplent notified for payment

Office natified for payment

MR {24} |Sender notified for reimbursement

M5 (25} |Sender notified of payment

TD (26] |Order pre-processing achleved

21

Connecting to the UPU-IP's Web Service

Connecting to the UPU-IP's Web Service

Before access to the Web Service Interface is granted, business partners must first generate a Cer-
tificate Signing Request (CSR) on the machine hosting the WS client. The CSR must be sent to the
UPU for it to be signed then returned to business partners. In addition to the signed certificate, the
PTC root Certificate Authority (CA) and sub-CA certificates provided by the PTC must be installed to
ensure the chain of trust with the PTC root CA. Once the certificates are installed, business partners
can access the UPU-IP's Web Service.

Refer to the PTC Enroll Client tool and its documentation to perform the following tasks: create the
certificate request and submit it to the PTC, install CA and sub-CA certificates, retrieve signed cer-
tificate for the machine and install it, and test the SSL connection.

To get a copy of the PTC Enroll Client tool, you can enter your service request at
https://support.upu.int.

Verify the certificates installation

1. Open the Microsoft Management Console (MMC) by clicking Start then typing mmc in the
Search field. The MMC window opens.

2. Open the signed certificate you have installed and check the Certification Path tab. If all
certificates are installed properly, your window will show the correct installation paths, as
in the example below.

General | Detais Certification Path |

Certification path
(5] PTC CA on Dev
(=] PTC Envollment Sub CA INTERN-IFS-30

-

You can also verify whether the certificate you have installed has a private key. Open the
certificate then click the General tab.

22

https://support.upu.int/

Connecting to the UPU-IP's Web Service

Certificate

General | Detais | Certification Path |

(¥

ﬁ Certificate Information

This certificate is intended for the following purpose(s):
» Ensures the identity of a remote computer

Issued to: INT-WRK-01.internal ptc-prod.net

Issued by: PTC Enrollment Sub CA INTERN-IFS-30

valid from 3/ 16/ 2017 to 3/ 16/ 2022

“? You have a private key that corresponds to this certificate.

Isstier, statement:

Learn more about certificates

How a certificate is validated

Each time a business partner's WS client application makes a call to the UPU-IP's Web Service, the cer-
tificate is validated against the UPU-IP's PTC root CA for authenticity and trustworthiness as illus-

trated in the diagram below.

Request validation)

Client UPU-IP CA

Warilfy prosenance al regquest
ula thi CRT. Iz it trusted?

Reguest forwarded

Cheack validity of
CAT:axpirac, rasaked, walid?

23

Connecting to the UPU-IP's Web Service

The Web Service's WSDL file

The Web Services Description Language (WSDL) is an XML-based definition describing the functions
of a Web Service. Also referred to as a .wsdl file, it defines the behavior of an XML Web Service and
provides instructions as to how WS clients can interact with the Web Service (what parameters the
service expects and what data structures the service returns). The WSDL file for the UPU-IP's Web
Service contains this same information. This file forms the basis of how the WS client application
integrates with the UPU-IP's Web Service Interface.

Generating a Web Service proxy client from the WSDL

To build your WS proxy client application, follow the steps below.

1. Access the UPU-IP's WS endpoint at the URL: http://hubws.ptc.post/ExternalService.svc.
Contact the PTC Service Desk at https://support.upu.int if you encounter difficulties
connecting.

4
[The URL above is the current production environment endpoint. The URL for test
environment endpoint is: http://hubws.preprod.upu.org/ExternalService.svc.

2. Generate a proxy client for calling the UPU-IP's Web Service. You can do this through the
command line tools (wsdl.exe, wsimport, etc.) or within your development environment,
depending on your platform.

3. Write code to connect the business logic of your national system to the WS proxy client cre-

ated in step 2.

Generating an API proxy client

1. Verify the certificate installation, see "Verify the certificates installation" on page 22 and
check the common name of your client certificate.

p Certficate x

General L\ﬂﬁiaﬂs Certfication Path

Show: | <all> v
Field Value ~
[] serial number 52000002 5b 9b 36 2e 54 07...
|- | signature algarithm shaS12R54
[_I|Si|;|nature hash algorithm shas12
| assuer PTC Enroliment Sub C4 Prefro...
[valid From Wednesday, Iy 15, 2020 11...
mvahdtu Tuesday, July 15, 2025 12:03...
|- subject marie. fourny@upu.int, UPLTP.,..,

[\Qmmn Fch M

£ = marie.Fourmy@upu.int
| = UPUTF _KEA

U = Server
0 =JICKEA
L = Mairabi
5 = Hairob]

C=KE Client certificate
common name

Edit Properties. .. Copy to Fie..,

=]

24

http://hubws.ptc.post/ExternalService.svc
https://support.upu.int/
http://hubws.preprod.upu.org/ExternalService.svc

Connecting to the UPU-IP's Web Service

2. Collect the UPU-IP API service definition by saving the WSDL available at http://hub-
ws.preprod.upu.org/ExternalService.svc (pre-production):

o Open your browser

o Access http://hubws.preprod.upu.org/ExternalService.svc?singleWsdl

« Save as UPUIP_ExternalService.wsdl in the folder where you want to generate the
proxy (e.g. C:\UPU-IP_Client)

3. Download and install Microsoft SDKs for Visual Studio (.Net Framework 4.8 Developer
Pack) from https://dotnet.microsoft.com/download/visual-studio-sdks

cC O @ dotnet.microsoft.com/download/visual-studio-sdks

ations Ecole Allemand - Enfant & PostFinance - E-fina

® We use cookies to improve your experience on our websites and for advertising. Privacy Statement

Y))
| Microsoft | NET About Learn Architectre Docs Downloads Community | LIVETV

NET Core 1.1
NET Core 1.0

.NET Standard

Travail Actu

x64 SDK | x86 SDK
w1.1.14)

x64 SDK | x86 SDK
(v1.1.14)

Loisirs Linguee | Dictionnai NewAppart

x64 SDK | x86 SDK
w1.1.14)

x64 SDK | x86 SDK
(v1.1.14)

Accept all Manage cookies

x64 Runtime | x86 Runtime
v1.1.13)

x64 Runtime | x86 Runtime
(v10.16)

All Microsoft ~

Release notes

Release notes

NET Standard is a formal specification of .NET APIs that are intended to be available on all .NET implementations. To target .NET Standard in your projects, install one of the SDKs from the .NET Core

table. For more information, see the .NET Standard article.

.NET Framework

.NET Framework is a Windows-only version of .NET for building any type of app that runs on Windows.

Version

Developer Pack ©

NET Framework 4.8

Developer Pack

NET Framework 4.7.2

NET Framework 4.7.1

NET Framework 4.7

Developer Pack

Developer Pack

Developer Pack

Runtime ©

Runtime

Runtime

Runtime

Runtime

Release notes

Release notes

Release notes

Release notes

Release notes

« After completing the installation, the ServiceModel Metadata Utility Tool
(Svcutil.exe) will be available on your computer. E.g. C:\ Program Files (x86)\ Mi-
crosoft SDKs\ Windows\ v10.0A\bin \ NETFX 4.8 Tools\ x64\

« Documentation about the tool is available at https://docs.microsoft.com/en-us/-
dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe

4. Generate the proxy/client code for UPU-IP API:

o Open your command line tool

o Set the current folder to the folder where the proxy will be generated and include the

WSDL file (e.g. C:\UPU-IP_Client)

e Run the following command: svcutil.exe C:\UPU-IP_Client\UPUIP_Extern-

alService.wsdl

« If the path to svcutil.exe was not registered during the installation, you may have to

add it manually:

C:\Program Files (x86)\Microsoft SDKs\Windows\v1@.0A\bin\NETFX 4.8

Tools\x64\svcutil.exe C:\UPU-IP_Client\UPUIP_ExternalService.wsdl

https://dotnet.microsoft.com/download/visual-studio-sdks
https://docs.microsoft.com/en-us/dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe
https://docs.microsoft.com/en-us/dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe

Connecting to the UPU-IP's Web Service

This command generates the ExternalService.cs and output.config files. The Extern-
alService.cs contains the code (C#) to be included in the proxy system you want to develop

to expose the UPU-IP service to your system.

The output.config file contains the configuration settings to specify how the generated

proxy will access the UPU-IP API.

5. Configure the proxy link to access the UPU-IP API

o The generated proxy includes default configuration settings to access the UPU-IP API
in the output.config file. For insantance, it may look as below:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<system.serviceModel>
<bindings>
<wsHttpBinding>
<binding name="ExternalServiceSSL">
<security>
<message clientCredentialType="Certificate" />
</security>
</binding>
</wsHttpBinding>
</bindings>
<client>
<endpoint address="http://hubws.preprod.upu.org/ExternalService.svc"
binding="wsHttpBinding" bindingConfiguration="ExternalServiceSSL"
contract="|ExternalService" name="ExternalServiceSSL">
<identity>
<certificate encodedValue="AwAAAAEAAAAUAAAA2EMWmMV1DyQ9pEXDCYeCAgCovhdAgAAAAAQAAAPOFA............
/I87WIOSW7VH6Ig=" />
</identity>
</endpoint>
</client>
</system.serviceModel>
</configuration>

« Edit the configuration file to include reference to your client certificate by adding the
behavior element as presented below with reference to the common name of your cli-
ent certificate.

<behaviors>
<endpointBehaviors>
<behavior name="ClientCertificateBehavior'">
<clientCredentials>
<clientCertificate findValue="ClientCertificate_CommonName" storelLocation="LocalMachine"
storeName="My" x509FindType="FindBySubjectName" />
<serviceCertificate>
<authentication certificateValidationMode="PeerOrChainTrust" revocationMode="NoCheck" />
</serviceCertificate>
</clientCredentials>
</behavior>
</endpointBehaviors>
</behaviors>

o Refer to this new behavior in the endpoint by adding the behavior configuration attrib-
ute in the endpoint element

26

Connecting to the UPU-IP's Web Service

<glient>
<endpgint. address="http://hubws.preprod.upu.org/ExternalService.svc"
behaviorConfiguration="ClientCertificateBehavior"
binding="wsHttpBinding" bindingConfiguration="ExternalServiceSSL"
contract="IExternalService" name="ExternalServiceSSL">
</endpoint>
</client>

o Remove the identity element if present in the configuration file. The configuration file
will look as below.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<system.serviceModel>
<bindings>
<wsHttpBinding>

<binding name="ExternalServiceSSL">

<security>
<message clientCredentialType="Certificate" />
</security>
</binding>
</wsHttpBinding>
</bindings>

</behaviors>
<client>
<endpoint address="http://hubws.preprod.upu.org/ExternalService.svc"

binding="wsHttpBinding" bindingConfiguration="ExternalServiceSSL"
contract="IExternalService" name="ExternalServiceSSL">
</endpoint>
</client>
</system.serviceModel>

</configuration>

6. Run the proxy client.

Elf Installing the Visual studio tool allows you to run the ExternalService.cs file and run the

ExternalServiceClient class to test calls to UPU-IP API.

27

UPU-IP Client certificate request requirements

UPU-IP Client certificate request requirements

Connecting to the UPU-IP API

PTC's Enroll Client tool is based on the Windows solution and may not be compatible with non-Win-
dows based servers. In such situation, the partner may have to generate a standard client certificate
and submit a service request to the UPU via our ticketing system to get a certificate.

This document describes the process and the requirements to generate and retrieve a valid request for
a client certificate connecting to UPU-IP APIL

Requesting a client certificate from a non-Windows-based OS

Follow the procedure below to obtain a client certificate to connect to the UPU-IP API from a non-
Windows-based operating system:

1. Collect the certificate files for the PTC Certificate Authority and PTC Enrollment sub-
ordinate certificate authority, which may have to be installed on the non-Windows server.

Certificate Platform URL
t, ided ttach t
PTC Certificate Authority Production n/ayet, provided as attachmen
for the moment
t, ided ttach t
PTC Certificate Authority Pre-production n/a yet, provided as attachmen
for the moment
t, ided ttach t
PTC Enrollment Sub CA Production n/ayet, provided as attachmen
for the moment
t, ided ttach t
PTC Enrollment Sub CA Pre-production n/a yet, provided as attachmen
for the moment

2. Generate a standard PKCS #10 client certificate request that meets the following require-

ments:

Request property Expectation
Request format PKCS #10
Friendly name The title given to a certificate

CN -C
. om'm on n‘ame The public URL of the server, for example, yoursite.com
attribute in Subject

i The domain names and IP addresses of the server requesting
SAN - Subject Altern-

; the certificate. This is an optional attribute. However, since
ative Name

the development of the security protocols requires SAN spe-

28

UPU-IP Client certificate request requirements

Request property Expectation

cifications, it is recommended to specify at least the public
URL of the server as done in the common name attribute of
the subject. E.g. DNS Name=yoursite.com

E- Email attribute in The email address of the contact handling certificate request
Subject and renewal for this certificate

L - Locality attribute in ~ The locality in which the certificate to be generated will reside
Subject based on this certificate request

S State attribute in Sub- The state or province in which the certificate to be generated
ject will reside based on this certificate request

C - Country attribute in The two-letter code of the country where your organization is
Subject located

The organization code for which the certificate will be pro-
O - Organization attrib- ‘duced, 51‘1ch ‘as the S}')ani‘sh or‘ganization code]1CE‘SA. Th‘is

information is essential since it can be used to confirm validate
that the UPU-IP API caller is authorized to retrieve data

related to this organization

ute in Subject

OU - Organization Unit
. . . Server
attribute in Subject

Data encipherment
Key usage Digital signature
Key encipherment

Extended Key U
) erT e' = _S‘:ige Client Authentication
(application policies)

Key size 2048

Hash algorithm Sha256
File export format of

the certificate request Base 64 file
tile

3. Raise a service request:

o Log into UPU's ticketing system https://support.upu.int/.

« Go to the Service Catalog, click on Services for Postal Operations and, under the
Postal Payment Services category, raise a new request for Post*Net Finance. Attach

29

https://support.upu.int/s/en

UPU-IP Client certificate request requirements

the client certificate request file to the ticket and indicate whether the request is for a
pre-production or production environment.

< C {} @& supportupuint/s/en#?page=5i5i1befs5715 Qe E»00O :
Official PTC Tools Translation Documentation IFs Css QualityOfService UPU-IP Reuters IFS Cloud PTC Enroliment IFS 450 eCompendium UIUX Materials DPs RefData
(o) | D o E@ —~D —~0
£« ;;:5 g SERVICE DESK HOME SERVICE CATALOG @) FOURNY marie (G»

News |Welcome to the UPU Service Desk

SERVICE CATALOG

Catalog Search for a service Q
1B Services

Services for postal operations 2

UPU Members and Delegates Services

> Furocmo
INTERCONNECTION
Category £y

IFS POST*Net Finance
EEE

Compendia o

Customs

Eurogiro Interconnection IFS - International Finance System
Mail

Post*Net Finance

Postal Payment Services
PTC Hosted Cloud Services PosTransfer m* = £OSTAL PATMENT

App CLEARING N
Security & Access

Other Services

UPU

PosTransfer App

PPSClearing

o While handling the service request, PTC will provide the issued certificate as an attach-
ment to the ticket. The provided file will be a .cer file Base 64 exported file.

4. Install the client certificate file on the server (converted to Java Key store format if imple-
mented on the Java platform).

30

Calling the UPU-IP's Web Service from a Java client

Calling the UPU-IP's Web Service from a Java client

Calling the UPU-IP web service from a Java client requires using Transport Layer Security with a cer-
tificate of authentication.

Prerequisites

o Java JDK installed on the machine

o OpenSSL if no other solution in place to generate certificate request

Getting a client certificate in Java Key Store

1. Generate a client certificate key by going to the path where openssl is and run the following
command:

<full_path>\openssl genrsa -out "<full path>\ServerCommonName_

ESB.key"Example if you extract our package in C:\UPU-IP_TLS

Cd “C:\Program Files\OpenSSL-Win64”

.\openssl genrsa -out "C:\UPU-IP_TLS\JavaKeyStoreCreation\ServerCommonName_
ESB. key"

This produces an RSA private key at the out parameter location.

2. Create a certificate request.

E The file create_requests.bat is prefilled with ESB settings, however, you must edit the

exact server name so it can be used as a common name for both the certificate and contact

31

Calling the UPU-IP's Web Service from a Java client

email. You should use this server name in the naming of the file.
1 JECHO OFF

genserate OS8Rz using gpenzal

] 11 it assumes it is installed at C:N\OpenS2L-Wincd and priv

& i prpdinfo possible walues are: Workstation/8erwver

SETLOCAL ENAELEEEZTENRAICNZ

1 SET openssl="C:“Program Files\Open¥3L-Winéd'bin'openssl.exe"

11 SET outputfolder=C:\UFU-IP TL&4JavaKey3toreCreation

12 SET key=C:\UPU-IP TL8\JavaKeyS3toreCreation\ServerCommonName ESB.key

15 SET outputfile=ServerCommonName ESE

14 ::8ET key=C:'\TestCSRZI048. key

15

lé SET mypath=%-dpl

17

12 SET opensslconf=openssl-valid.cig

19

£00 11 3ET gpenssloonf=openssl0-valid. gfg

3ET country=E3

£Z4 S3ET operator=J1CESE

24 ::3ET prodinfo=Workstation

25 SET prodinfo=Serwver

26 SET loc=Madrid

27 SET state=dpain

‘5 Set email=8painContact@Email.int
ti1gha = md5, shal, sheZZd4, shaz56, shald84 or sha3lZ
40 set sha=shailZ

31 ::3ha = md3

set commonname=ServerCommonName ESB
18t subjectAl tName=gommonname

LR)

Make sure the folder structure specified in the file exists. Open the command prompt as an

administrator and run the create_request.bat file with arguments (1 1)

wine cmd < create_requests.bat 1 1

Example if you extract our package in C:\UPU-IP_TLS

C:\UPU-IP_TLS\JavaKeyStoreCreation\create requests.bat 1 1

This creates a certificate request (CSR file e.g. ServerCommonName_ESB-1.csr) in the output

folder as specified.

5 1t adjust the paths and the other variables to mateh the desired C3R

is generated

properties

3. Submit the certificate request by providing the above CSR to PTC contacts either through

email or through a support ticket created using http://support.upu.int.

PTC then forwards your request to the UPU-PTC CA authority for issuance by using the

PTC Enroll tool on a Windows server.

32

http://support.upu.int/

Calling the UPU-IP's Web Service from a Java client

4. Issuance of certificates: PTC validates your request, and then issues, retrieves and tests the
certificate. Client certificates include the full CA chain.

5. Conversion to Java Key Store

PTC creates a p12 certificate key and key store from the client certificate using the following
command:

<full path>\openssl.exe pkcsl2 -export -inkey <full path>\ServerCommonName_
ESB.key -in <full path>\ServerCommonName_ESB.cer -out <full path>\Server-
CommonName_ESB_identity.pl2 -name "mykey"<full path>\keytool.exe -importkey-
store -destkeystore <full_path>\ServerCommonName_ESB.jks -deststorepass
Pass1234 -srckeystore <full path>\ServerCommonName_ ESB_identity.pl2 -src-
storetype PKCS12 -srcstorepass Passl1234

PTC then concatenates the three certificates in base64: .CER format; root CA, subordinate

CA and the certificate produced above.

o Identity.p12is converted to ServerCommonName_ESB.jks. You will receive two .jks
files:

a. The client jks created for ESB: ServerCommonName_ESB.jks

b. The java key store cacerts.jks with pre-prod CA and subordinate CA certificates

E Although the PTC is more experienced in performing this step, designated oper-
ators can do it as well. If you wish to do it yourself or if you require a specific Java
KeyStore password, please indicate it in your new certificate issuance request/email.

Connecting to the UPU-IP web service

The shared demo application NetBeans project in the current folder can call the UPU-IP CheckStatus
method as shown in the step below.

1. Run the demo application as follows:

java -jar HubWcfClient <URL> <CACerts.jks> <CA Cert JKS pwd> <Server-
CommonName_ESB.jks> <Client jks pwd> <MOID>

Example:

java -jar "C:\UPU-IP_TLS\HubWcfClient.jar" https://hubws-tls.-
preprod.upu.org/ExternalService.svc "C:\UPU-IP_TLS\cacerts.jks" 123456
"C:\UPU-IP_TLS\ServerCommonName_ESB.jks" Pass1234 J20AGBAGRAORU2050000000003

33

Integration scenarios

Integration scenarios

This chapter describes the main operations that can be carried out via calls to the WS methods dis-

cussed in "Web Service Interface" on page 7.

Issue a postal payment

To issue a postal payment, the business partner makes a WS call to the Issue() method in the UPU-IP's
WS to transmit the payment information. The UPU-IP then stores the payment information in its data-
base. The payment is then available for pay out by the paying business partner.

Issue postal payment)

Sending Org UPU-IP

I=zud]

Y

Result

1
Zuoe MOt D8

What are the methods used?

To issue the postal payment information to the UPU-IP, the business partner uses the Issue() method
with the required parameters indicated on 7.

On receipt of the message, the UPU-IP stores the payment information in its database. The response
to the WS call contains the result of the success of the issue process.

34

Integration scenarios

Retrieve and pay a postal payment

To retrieve a postal payment, the business partner makes a WS call to the Get() or ReceiveForAccount

() methods. Any number of the following fields relating to the payment can be used to retrieve the
information:

o IFS International money order ID

o Local identifier

o Recipient name

o Deposited amount (lower limit, upper limit)

o Transferred amount (lower limit, upper limit)

o Purchase date (Date from, Date to)

What are the methods used?

The method to use in calling the UPU-IP's Web Service depends on whether you are retrieving inform-
ation for a cash payment product or an account payment product.

Pay to cash

Payment to cash)

Sending Org UPU-IP Paying org

Getl)

4

—

List<hACr=

Pay(]

A

Resul

1
Upcate DB

CheckStatus()

Y

CheckStatus()

A

Status

Ltatus

Use the Get() method to call the UPU-IP's Web Service if the postal payment information to be
retrieved is for a cash payment product, of which there are two types:

35

Integration scenarios

« cash-to-cash (OR)

« account-to-cash (OT)

Upon successful retrieval of the postal payment, the payment operation can take place at the paying
business partner. If payout is possible at the business partner, the business partner calls the Pay()
method to attempt to record the payment as paid. If the postal payment is still payable, then the UPU
records the postal payment as paid.

Where the payout is unsuccessful, the status of the postal payment in the UPU-IP remains
unchanged. The UPU-IP returns this information to the paying business partner in the response to
the Pay() web service call.

At any point after the postal payment has been issued, both the sending and receiving business part-
ners can check the status of the postal payment sent using the CheckStatus() method. The UPU-IP
returns the status of the postal payment in the response to the WS call. In particular, the sending busi-
ness partner can check the status of an issued postal payment, and where it has been paid out, it can
record this state change in its national system.

36

Integration scenarios

Pay to account

Payment to account)

Sending Org UPU-IP Paying org

RecetveForfcoount()

-t
List=<hACk=
Upcdate accounts
ConfirmPayToAocount)
-t
vaid
CheckStatusAccount])
o

Status

Use the ReceiveForAccount() WS method to call the UPU-IP's Web Service if the postal payment
information to be retrieved is for an account payment product, of which there are two types:

e cash-to-account (IN)

« account-to-account (GT)

The UPU-IP returns a list of all payable postal payments to account that are destined for the receiving
business partner between the From/To date parameters specified. The receiving business partner
then updates the UPU-IP on the status of the payment to account by making a WS call to the UPU-IP
using the ConfirmPayToAccount() method.

At any point, the sending business partner can check the status of postal payments sent using the

CheckStatus() method.

The UPU-IP returns a list of postal payments and their corresponding statuses.

Cancel a postal payment

The sending business partner can cancel a postal payment that has already been issued to the UPU-IP
if it is in a cancellable state - has not already been paid out, canceled or expired. Cancellation is only
applicable to cash payment products: cash-to-cash (OR) and account-to-cash (OT). Payable-to-
account postal payment products (IN and GT) cannot be canceled.

37

Integration scenarios

Cancellation request)
Sending Org UPU-IP Paying org
Issueel)
=
= vold
Store MG to D8
Siore payinfo ko OB
Cancel[)
Result Stars MO as cancellsd

What are the methods used?
The sending business partner makes a call to the Cancel() method.

The UPU-IP checks the status of the postal payment in the database. If the postal payment has not
been paid and is in a cancellable state, the UPU-IP returns a "success" message to the sending business
partner in the WS response. If the postal payment has been paid, has expired or already canceled, the
UPU-IP returns an "unsuccessful" response.

If cancellation is successful, the UPU-IP updates the status of the postal payment in the database as
"canceled". The sending business partner can then proceed to request a reimbursement.

38

Integration scenarios

Reimburse a postal payment

The sending business partner can request a reimbursement of canceled postal payments.

Reimbursement request)

Sending Org UPU-IP Paying org

Cancell)

Riesult
Stare MO as carceled

-

Store payinfo to OB

Reimbursed)

]

Result
Store M0k a5 resribursed

-

What are the methods used?
In calling the UPU-IP's Web Service, the sending business partner uses the Reimburse() method.

If the postal payment is in a reimbursable state, the WS returns a "success" message to the sending
business partner in the WS response. Otherwise, the WS returns an "unsuccessful" message with
details of the error.

If reimbursement is successful, the UPU-IP updates the status of the postal payment in the database.

Payments to/from external partners

Where the sending or paying business partner is an external partner, then the external partner’s sys-
tem becomes the system of reference for postal payments, rather than the UPU-IP. Therefore, requests
to the WS methods on the UPU-IP are typically forwarded to the external partner or system of ref-
erence.

External partner as the sending business partner

In this scenario, postal payments are retrieved from the external partner system by the paying busi-
ness partner via the UPU-IP (pull mode). Also, payouts are recorded in the external sending partner’s
system.

External partners offer two functions to postal paying partners:

39

Integration scenarios

« afunction to retrieve payable postal payments

« a function to record payouts

Pull mode: External Partner = Post's national s'g-stem)
Paying Org Sending Org
Post’s National UPU-IP
System External partner
Geti)
- W5 call to external partner _
MO {or Error Msg)
Sore MO in B8
RO
CheckStatus()
e eeeeeeeee==== L
..;_E ______________
MO # State info
Payi] W5 call to external partner
L 1]
Result
Slore shabe changs in 06 i s oesa
Result
CheckStatus()
_———————————— — -
..;_\1-":_ ______________
M + State info

What are the methods used?

The paying business partner makes a call to the Get() method on the UPU-IP to retrieve the details of
any payable postal payments from the external sending partner. The UPU-IP forwards this request to
the external sending business partner. If successful, the external partner returns the details of the
postal payment to the UPU-IP which stores those details in its database then returns those details back
to the paying business partner. If the operation was unsuccessful i.e. no payable postal payments
could be returned, an error message is returned to the UPU-IP and back to the paying business part-

ner.

E In this scenario, a call to the Get() method is only forwarded once by the UPU-IP to the sending
external partner if the postal payment was already successfully retrieved. Further calls to Get() are
superfluous i.e. the payment information is already present in the UPU-IP database. The Pay()
method determines whether the payment is still payable in the external sending partner’s system and
payout may take place.

On payout at the paying business partner, the paying business partner calls the Pay() method on the
UPU-IP in an attempt to record the payment as “paid” in the external sending partner’s system. The

40

Integration scenarios

UPU-IP forwards the call to Pay() to the external sending partner. Where the payment is still payable
and payout can proceed, as dictated by the external partner’s system, the external partner system
marks the payment as “paid” in its system and returns a success message back to the UPU-IP. The
UPU-IP records this state change in its database and forwards this success message back to the paying
business partner. The paying business partner then marks this payment as “paid” in its own national
system. Where the postal payment was not payable, as dictated by the external sending partner’s sys-
tem (it was already paid out, cancelled, expired etc.), an error message is returned to the UPU-IP and
forwarded back to the paying business partner.

E Any number of attempts to call Pay() by the paying business partner are forwarded to the
external sending partner via the UPU-IP.

In this scenario, calls to the CheckStatus() method by the paying business partner are not forwarded
to the external sending partner. Results of calls to CheckStatus() return the status of the payment in
the UPU-IP database. This is because external sending partners, at least in this scenario, do not tend to
expose track and trace functions to paying business partners. The CheckStatus() method plays no part
in the retrieval and payout of money orders from external sending partners. Only calls to the Get()
and Pay() methods are pertinent and forwarded via the UPU-IP to the external sending partner.

External partner as the paying business partner

In this scenario, the external partner is the paying business partner and the postal partner is the send-
ing business partner. Payments are issued (or pushed) from the sending business partner to the
external paying partner’s system via the UPU-IP (push mode). All WS calls to the UPU-IP from the
sending partner are forwarded to the external paying partner via the UPU-IP. This is for the reason
that, since the paying external partner, in this scenario, does not return any postal payment status
information back to the UPU-IP, the sending and paying partner systems need to be synchronized
regarding the status of any postal payment.

41

Integration scenarios

Push mode: Post's national system —* External Partner)

Sending Org Paying Org

Post's National UPU-IP

System External partner

Bookl DToPayingExternal()
- W5 call to external partner

e

External partner payment D

External partner payment D

W5 call to create payment in
external partner system

s5uE]]

Y

= — —— — Success/ Fail
Success,/ Fail

State changing cperation
ot M0 L. Pay-cut

CheckStatus|)

Re-route call to external partner

Status of MO
Status of MO

What are the methods used?

The sending business partner makes a call to the BookIDToPayingExternal() method to reserve a

postal payment ID in the external paying partner system. The UPU-IP relays this request to the
external paying business partner. The external paying business partner then returns the external pay-
ment ID to the UPU-IP which in turn returns this ID to the sending business partner. Where this fails,
an error message is returned to the UPU-IP and sending partner from the external sending business
partner.

Using the retrieved external partner payment ID, the sending business partner makes a call to the
Issue()WS method to send the postal payment details to the external paying partner. The UPU-IP
relays this request to the external paying partner to create the payment in its system. The external pay-
ing business partner returns a “Success" or "Failure" message which the UPU-IP subsequently returns
to the sending business partner.

At any point, the sending partner may call the CheckStatus() method to verify the status of any postal
payments issued to the external partner. In this scenario, all requests to CheckStatus() are forwarded
to the external paying partner via the UPU-IP. This is the method by which the sending partner is
informed of any state change regarding the payment in the external paying partner’s system. For
example, where payout took place successfully in the external paying partner’s system, a call to Check-
Status() is forwarded via the UPU-IP to the external paying partner’s system and the new status of

42

Integration scenarios

“paid” is returned to the sending partner via the UPU-IP. The sending partner then updates the

status of that payment in its national system.

E In this scenario, calls to Cancel() and Reimburse() may also be forwarded to the external paying

partner’s system via the UPU-IP.

43

	About this document
	Intended audience
	How to use this manual
	Terminology

	Introduction
	Overview
	Web Service
	Security

	Web Service Interface
	Methods

	Data Structures
	TDateAndPlace class
	TMO class
	TSearchCriteria class
	TPayInfo class
	TStatus class

	Connecting to the UPU-IP's Web Service
	Verify the certificates installation
	How a certificate is validated
	The Web Service's WSDL file
	Generating a Web Service proxy client from the WSDL
	Generating an API proxy client

	UPU-IP Client certificate request requirements
	Connecting to the UPU-IP API
	Requesting a client certificate from a non-Windows-based OS

	Calling the UPU-IP's Web Service from a Java client
	Prerequisites
	Getting a client certificate in Java Key Store
	Connecting to the UPU-IP web service

	Integration scenarios
	Issue a postal payment
	Retrieve and pay a postal payment
	Cancel a postal payment
	Reimburse a postal payment
	Payments to/from external partners

