	[image: logo]REPLACES VERSION PREVIOUSLY PUBLISHED
REPLACES VERSION PREVIOUSLY PUBLISHED

	

-1-

EDI data feed architecture

[bookmark: _Toc196465128][bookmark: _Toc196465881][bookmark: _Toc196480927][bookmark: _Toc196481029][bookmark: _Toc196481357][bookmark: _Toc196481488]
Introduction

This document provides high level technical information on how EDI data will be fed into GRS.
EDI data is all the data exchanged among DOs in EDI messages.

There are multiple types of EDI messages, with each defined in a UPU messaging standard. Today, there are 10 different message types actively exchanged. Each message has a different structure. The message with the highest number of data elements is PREDES, with 97 data elements.

There are also different messaging technologies in place (EDIFACT or XML), depending on the message.
Because of all this, reading directly the EDI messages is not trivial.

The UPU receives a copy of EDI messages, in their “raw” format. The data is already injected in a global data lake, based on the Hadoop technology.

Depending on what modules are provided in GRS, two data feed architectures are proposed:
Data feed 1: copy prepared data from the UPU data lake;
Data feed 2: copy “raw” EDI messages

For Compliance measurement module to be re-developed in GRS, Data feed 2 is required to be put in place, otherwise Data feed 1 is sufficient.

When Data feed 2 is in place, data feed 1 is not needed anymore: the mechanism analyzing data in the EDI messages will be in GRS; this mechanism can also extract and store the data needed for GRS mail related calculations.

It is requested to provide a modular approach.
It means the following:
· Proposal for the main GRS: data feed 1 from above
· Additional compliance module: add the cost for data feed 2 and remove the cost for data feed 1
Data feed 1: copy of prepared data from the UPU data lake
The figure below illustrates the data feed architecture proposed.

[image:]

From the UPU data lake, a data extractor job (1) will run hourly and extract the necessary data for GRS and push the data to a message queue, Azure service bus (2). The data to be extracted matches the internal HBase structure. A configuration structure shall be available to identify the data fields excluded from extraction.

The injector process (3), whose development is the responsibility of GRS, will consume the data residing on the message queue and inject it into the GRS database.
Data feed 2: copy of “raw” EDI messages
With this approach, it still has to be confirmed by UPU if the message queuing approach mentioned for data feed 1 is required or not.

The raw EDI messages are text files.

If no message queuing is necessary, the files will be made available in a folder (possibly available through FTP) and will have to be read from there.

GRS CFT_Annex 3-5
image1.emf

PTC - Hadoop

PTC default datalake

DOP - GRS

GRS database

DOP data extractor

(1)

Extract

Injector

(3)

Inject

Azure

Service bus

(2)

Push

Consume

image2.png
= | UNIVERSAL
A. POSTAL
=) | UNION

GRS CFT_Annex 3

-

5

REPLACES VERSION PREVIOUSLY PUBLISHED

REPLACES VERSION PREVIOUSLY PUBLISHED

EDI data feed architecture

 GRS CFT_Annex 3 - 5

REPLACES VERSION PREVIOUSLY PUBLISHED REPLACES VERSION PREVIOUSLY PUBLISHED EDI data feed architecture

